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Background
Birth–death (bd) processes are continuous-time Markov processes with two types of 
transitions; births which increase the state by one, and deaths which decrease the state 
by one. bd processes are suitable for modelling the dynamics of the number of individu-
als in a population, and are widely used in a broad range of areas such as biology, ecology 
and operations research. The research in this paper is motivated by a specific biologi-
cal application: the number of RNA molecules in a single living cell. The evolution of a 
population of RNA molecules can be modelled by a bd process, since the population can 
increase (production) or decrease (degradation) by one molecule at a time. A complica-
tion, however, is that it is known that the production of RNA molecules is a sequential 
process consisting of multiple phases [8, 13], and that the production is regulated by an 
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on/off mechanism [10], which we will refer to as the on/off switch. To model the popu-
lation of RNA molecules in a realistic way, we therefore extend the basic bd process by 
including these two features to the model. This results in what we call the on/off-seq-L 
process, which is also considered in [3]. The on/off switch in the on/off-seq-L process is 
a mechanism that decides if the next birth of an individual can be set in motion or not. 
Births can be initiated only while the switch is turned on. If the switch turns off, it needs 
to be switched back on before a birth can be initiated. Once a birth has been initiated, it 
takes L sequential independent exponentially distributed phases before a new individual 
is born and the population increases by one.

Our objective is to develop a statistical inference method for the on/off-seq-L process, 
which we wish to apply to a real data set of RNA counts in cells. In line with the struc-
ture of our real data set, we focus on a setting in which we have access to longitudi-
nal measurements on the number of RNA molecules in a large number of independent 
cells. The concrete goal is to estimate the model parameters based on observations of 
the population size at discrete time points, and to perform model selection on the on/
off switch and on the number of phases L in the birth process. This kind of inference 
problem has been studied before in the context of RNA transcription. We mention [5], 
where maximum likelihood estimates are computed and a model selection procedure is 
performed for a stochastic model with a sequential birth process. However, in contrast 
to the on/off-seq-L process, an on/off mechanism is not included in that model. In [3, 
9], maximum likelihood estimation and a model selection procedure are performed for 
the on/off-seq-L process. However, in these studies the likelihood function is computed 
from observations of the transcription intervals, that is, the time between two consecu-
tive RNA births. These intervals are not known exactly, since the data is interval cen-
sored. In the present paper, we use a method to evaluate the likelihood function from 
observations of the population size, instead of the transcription intervals. To this end 
we make use of the fact that the on/off-seq-L process can be seen as a quasi birth–death 
(qbd) process.

A quasi birth–death (qbd) process is a bd process of which the transition rates are 
affected by an underlying continuous-time Markov chain, often referred to as the 
phase process. Together, the population process and the phase process form a bivariate 
Markov process. The class of qbd processes owes its popularity to the fact that it is com-
prehensive (in that it is capable of accurately approximating rather general population 
processes), while at the same time it allows for explicit calculations. Various properties 
of qbd processes have been studied over the years: we refer to [2] for calculations of the 
equilibrium distribution, to [11] for properties of specific relevant rate matrices, and to 
[7] for a study on the distribution of the running maximum of the process.

To perform statistical inference, we need sound methodology to compute the likeli-
hood function from observations of the population process. This, in turn, requires tech-
niques for the evaluation of the time-dependent probabilities corresponding to qbd 
processes, which is a challenging task due to the hidden, unobserved elements of the 
model. These challenges are discussed in detail in [6], where a method is presented to 
numerically approximate the time-dependent distribution of the bivariate Markov pro-
cess of a qbd process. More specifically, [6] proposes, and formally justifies, an approach 
based on the so-called Erlangization technique. This technique, which has been studied 
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in other contexts as well [1, 7, 12], exploits the fact that, although it may be computa-
tionally hard to evaluate the distribution of the state of the bivariate Markov process at 
a deterministic time, it can be computed at exponentially distributed epochs relatively 
easily. Using the fact that one can approximate a deterministic number arbitrarily closely 
by the sum of exponentially distributed numbers, one can thus obtain accurate approxi-
mations of the distribution of the qbd at deterministic epochs. In this paper we rely on 
the Erlangization technique as developed in [6] to evaluate the likelihood function from 
observations of the population size.

The remainder of this paper is organized as follows. In “Mathematical model and esti-
mation problem” section, we mathematically define the on/off-seq-L process and intro-
duce the corresponding likelihood function and estimation problem. “Quasi birth–death 
framework” section shows that the on/off-seq-L process belongs to the class of qbd 
processes, and therefore the Erlangization method as introduced in [6] can be used to 
approximate the likelihood. By an extensive numerical study in “Numerical study” sec-
tion, we investigate the accuracy of the resulting estimation method for the on/off-seq-L 
process. In addition, we explore numerical complications related to the likelihood maxi-
mization. “RNA transcription” section describes in detail the biological process of RNA 
transcription, which is the motivating application of this paper. A model selection proce-
dure is performed for different on/off-seq-L processes, based on data of RNA counts in 
single cells. The paper is concluded by a discussion in “Discussion” section.

Methods
Mathematical model and estimation problem

In this section we formally introduce the class of on/off-seq-L processes together with 
the necessary notation. We then define the estimation problem and the corresponding 
likelihood function.

The on/off‑seq‑L process

The on/off-seq-L process can be viewed as a bd process with two specific features in 
the birth process. First, the births follow a hypoexponential distribution—that is a sum 
of exponentially distributed phases—instead of the often used exponential distribution. 
Second, the births are controlled by a so-called on/off switch, which means that births 
can be initiated only while the switch is turned on. Because of this specific structure, 
the on/off-seq-L process is modelled as a two-dimensional Markov process, consisting 
of the population process together with an underlying background process. We start 
with the mathematical definition of this background process, which can be viewed as a 
process that keeps track of the status of the birth process. We then define the population 
process and complete the definition with the two-dimensional Markov process and its 
transition rates.

Let  {Xt}t ≥  0 be a continuous-time Markov chain modeling both the on-off switch of 
the process and the exponential phases of the birth process. Its state space is given by 
E = {0, 1, . . . , L} . We assume that the distribution of X0 , the initial state distribution, is 
equal to the (unique) stationary distribution of {Xt} . The state Xt = 0 corresponds to the 
state where the on/off switch is turned off, and will be referred to as the off-state. Impor-
tantly, births cannot be initiated in this state. The switch needs to switch back on first, 
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leading to the state Xt = 1 , which we refer to as the on-state. Births can only be initiated 
from this state. Once a birth is initiated, the process runs through states 1, . . . , L and 
back to state 1, corresponding to the sequential, exponential phases of the birth pro-
cess. A schematic representation is given in Fig. 1 for the model with L = 3 . When the L 
exponential phases are completed, a new individual is born and the population increases 
by one. During this birth process, the switch remains on.

Let {Mt}t≥0 be the population process, with Mt equal to the total number of indi-
viduals in the system at time t. The birth process that increases the population size is 
described above. The population size decreases according to a general death process, 
where the lifetimes of the individuals are assumed to follow an exponential distribution, 
independently of each other, and independently of {Xt} . The entire model is described by 
the two-dimensional, time-homogeneous Markov process {Xt ,Mt}t≥0 . Combining the 
definitions of {Xt} and {Mt} , we can define the transition rates of this joint process.

First, we have the two rates associated with the on–off mechanism. These rates corre-
spond to jumps of {Xt} between states 0 and 1 while the state of {Mt} remains unchanged. 
When Mt = m , we have, for all m ≥ 0 , the transition rate qon for the transition from 
(0, m) to (1, m) and the rate qoff for the transition from (1, m) to (0, m). Note that qon 
and qoff do not depend on m. Secondly, we have the rates associated with the sequen-
tial birth phases, where the state of {Mt} remains unchanged until the completion of the 
final phase. For all L ≥ 2 we have rates �i for the transitions from (i,  m) to (i + 1,m) , 
i ∈ 1, . . . , L− 1 , and for all L ≥ 1 we have rate �L for the transition (L, m) to (1,m+ 1) . 
Note that after completion of the final phase, the process {Xt} returns to state 1 from 
which the system can either be turned off, or a new birth can be initiated. Last, we have 
the rates associated with the deaths. The lifetimes of the individuals follow an exponen-
tial distribution with parameter µ , independently of each other. This means that the total 
death rate is proportional to the total number of individuals in the population. Further-
more, the lifetimes are not affected by the state of {Xt} . Hence for all i ∈ 1, . . . , L and 
m > 0 , we have rate mµ for the transition (i, m) to (i,m− 1).

Likelihood evaluation

We combine all model parameters of the on/off-seq-L process in the parameter vec-
tor θ = (qon, qoff, �1, . . . , �L,µ)

⊤ . As mentioned above, the goal is to estimate θ based 
on observations of the population size at discrete time points, and to perform model 
selection on the on/off switch and on the number of phases L in the birth process. To 
find maximum likelihood estimates, we need a reliable method to evaluate the likelihood 
function of the data with respect to θ.

0 1 2 3
qoff

qon λ1 λ2

λ3

Fig. 1  Schematic representation of the {Xt} process in the on/off-seq-3 model. The dotted line indicates the 
transition that results in a birth of a new individual. Parameters qoff , qon, �1, �2 and �3 denote the transition 
rates
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The available data set consists of multiple times series corresponding to N independent 
experiments. Let � > 0 be the time between two consecutive observations, and let n+ 1 
be the number of observations in a single experiment corresponding to observation times 
0,�, 2�, . . . , n� . We assume that in each experiment the process {Mt} is observed at these 
observation times, resulting in observations m(k)

0 , . . . ,m
(k)
n  for experiments k = 1, . . .N  . 

We introduce the corresponding data vectors mk
0,n = (m

(k)
0 , . . . ,m

(k)
n )⊤ , k = 1, . . .N  . The 

loglikelihood function based on the N independent experiments is then equal to

We can rewrite the likelihood function, L(θ |m(k)
0,n) , for a single data vector m(k)

0,n , by con-
ditioning on the states of the background process {Xt} at the observation times. To this 
end, we define the transition probabilities

Then

Remark 1

Expressions (1) and (2) can easily be generalized in case the number of observations n is 
not equal among all experiments. In that case, define the sequence n1, . . . , nN , and replace 
n by nk.

In the next section we show that the on/off-seq-L process can be seen as a qbd process. 
This means that the Erlangization technique as introduced in [6] can be applied to approxi-
mate the transition probabilities in (2), and hence the likelihood function (1).

We proceed by sketching the main ideas behind the Erlangization technique; for details 
we refer to [6]. We first note that for an exponentially distributed time with mean η−1 , 
denoted by Tη , the transition probabilities

can be computed relatively easily, namely by solving a system of linear equations (which 
can be done using standard numerical software). We then define the matrix �η as the 
transition probability matrix whose entries are the pxx′(m,m′;Tη) , for x, x′ ∈ E and 
m,m′ ≥ 0 . A next observation is that for Tη,i , i = 1, 2, . . . , denoting a sequence of inde-
pendent exponentially distributed random variables with mean η−1 , it holds that

(1)logL(θ |m
(1)
0,n, . . . ,m

(N )
0,n ) =

N
∑

k=1

logL(θ |m
(k)
0,n).

pxx′(m,m′; t) = P(Mt = m′,Xt = x′ |M0 = m,X0 = x).

(2)L(θ |m
(k)
0,n) =

∑

x0,...,xn∈E

P(M0 = m
(k)
0 ,X0 = x0)

n
∏

i=1

pxi−1xi(m
(k)
i−1,m

(k)
i ;�).

pxx′(m,m′;Tη) = P(MTη = m′,XTη = x′ |M0 = m,X0 = x)

ℓ
∑

i=1

Tℓ/�,i → �, almost surely, as ℓ → ∞.
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In words this means that the sum of appropriately scaled exponential random variables, 
which has an Erlang distribution, converges to a constant. As a consequence, the entries 
of the ℓ-step transition probability matrix (�ℓ/�)

ℓ converge, as ℓ → ∞ , to the probabili-
ties pxx′(m,m′;�) that we are interested in. The idea of Erlangization is to approximate 
the pxx′(m,m′;�) by the entries of (�ℓ/�)

ℓ for a sufficiently large value of ℓ . In [6] the 
accuracy of this technique is assessed in detail, and in particular it is pointed out how an 
appropriate value of ℓ can be selected.

A technical requirement for application of the Erlangization technique is that the popula-
tion size Mt is bounded from above by a constant C ∈ N . By the nature of the bd process, 
the state of Mt can only increase by one at a time. This means that for any small con-
stant ε > 0 , we can choose a constant C large enough to ensure that for all x, x′ ∈ E and 
m

(k)
i < m′ , k = 1, . . . ,N  , i = 1, . . . , n , the transition probability pxx′(m

(k)
i ,m′;�) is negli-

gible for m′ > C , in the sense that

Hence, we can indeed bound the population size by this constant C. How to choose C 
depends on the application at hand. Evidently, the smaller the desired ε , the larger the 
value of C that is needed.

Quasi birth–death framework

In this section we show that the on/off-seq-L process belongs to the class of qbd processes, 
using the framework as described in [6]. As argued in the previous section, we can assume 
that the population process {Mt} attains values in {0, 1, . . . ,C} for some C > 0.

Let, as in [6], Q(m) , m = 0, . . . ,C , be the transition rate matrix on state space 
E = {0, 1, . . . , L} , of which the elements correspond to the jumps from Xt = i to Xt = j 
while the state Mt = m remains unchanged. The diagonal elements of Q(m) are such that 
the row sums are zero. Note that, in the setting of this paper, Q(m) is actually independent of 
m. For example, for L = 3 and all m ∈ {0, 1, . . . ,C} , we have

Next, we introduce the matrix �(m) on E, of which the elements correspond to the jumps 
that increase Mt by one, while Xt jumps from state i to j. Note that for the on/off-seq-L 
process, all �(m)

ij  are zero except for the one corresponding to the completion of the final 
phase of the birth process (if m ≤ C − 1 ). Hence for L = 3 , and m ≤ C − 1 , we have

At last, we introduce the matrix M(m) on E, of which the elements correspond to the 
jumps that decrease Mt by one, while Xt jumps from state i to j. Deaths leave the state of 
the background process unchanged, hence all µ(m)

ij  are zero for i  = j . We have

(3)max
m′>C

pxx′(m
(k)
i ,m′;�) < ε.

Q(m) =







−qon qon 0 0
qoff − qoff − �1 �1 0
0 0 − �2 �2

0 0 0 0






.

�(m) =







0 0 0 0
0 0 0 0
0 0 0 0
0 �3 0 0






.
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We observe that we can write down the transition rate matrix of the joint process 
{Xt ,Mt} in terms of the matrices Q(m) , �(m) and M(m) in the same way as in [6]. The total 
number of states of {Xt ,Mt} is D = (L+ 1)(C + 1) , and the D × D transition matrix is 
equal to

where Q̄(m) is defined as Q(m) with the diagonal entries adapted such that the row sums 
of Q are zero. This means that, in contrast to Q(m) , the diagonal entries of Q̄(m) depend 
on m.

We conclude that the on/off-seq-L process can be seen as a special case of a qbd 
process. This means that we can use the results in [6] to approximate our likelihood 
function in a reliable and accurate way. Using the Erlangization technique we can 
approximate the likelihood L(θ |m(k)

0,n) corresponding to a single data vector m(k)
0,n as 

given in (2), which in turn can be used to approximate the likelihood function (1) cor-
responding to N independent experiments. The maximum likelihood estimate θ̂ of θ 
can be evaluated by numerical optimization of the likelihood over the domain D of θ.

Results
Numerical study

In this section we investigate the accuracy of the estimation method for the on/off-
seq-L process as described above, by means of a simulation-based numerical study. In 
addition, we identify numerical complications related to the likelihood maximization 
that we need to take into account, and investigate how to solve them.

Each model setting considered in this section corresponds to a fixed number of 
phases L and to a fixed parameter vector θ = (qon, qoff, �1, . . . , �L,µ)

⊤ ∈ D . In our 
simulation studies, the model setting and the size of the data were chosen first, by 
fixing L and θ , and fixing n and N. Next, the data vectors mk

0,n , for k = 1, . . . ,N  , were 
simulated B times, for B > 0 large and the estimation method was applied to each of 
the B groups of data vectors. Here the parameter ℓ in the Erlangization approxima-
tion was fixed at ℓ = 2048 and the domain D was chosen as [0, b]L+3 for a fixed upper 
bound b > 0 . This resulted in B estimates for the parameter vector θ , which we denote 
by θ̂i , i = 1, . . . ,B . By analyzing these parameter estimates, we obtained insight in the 
performance of the estimation method. We performed simulation studies for a vari-
ety of model settings and present our findings with the use of a couple of illustrative 
examples.

M
(m) =







mµ 0 0 0
0 mµ 0 0
0 0 mµ 0
0 0 0 mµ






.

Q =



















Q̄(0) �(0) 0 · · · 0 0

M(1) Q̄(1) �(1) · · · 0 0

0 M(2) Q̄(2) · · · 0 0
...

...
...

. . .
...

0 0 0 · · · Q̄(C−1) �(C−1)

0 0 0 · · · M(C) Q̄(C)



















,
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Imposing constraints

The first example concerns the on/off-seq-2 process with parameters qon = 0.1 , 
qoff = 0.2 , �1 = 2 , �2 = 1 and µ = 0 . This means that we start with a model in which 
only births occur and no deaths, and we consider µ as a known parameter. Hence, in 
this example θ = (qon, qoff , �1, �2)

⊤ . The size of the data set was fixed, with n = 120 
and N = 375 . The results of a simulation study with B = 1000 , b = 10 and C = 100 are 
presented in Table 1 and Fig. 2. Table 1 shows, for each parameter, the sample mean 
of the 1000 estimates and the corresponding sample standard deviation. We observe 
that the sample means for qoff  , �1 and �2 do not match with the true parameter val-
ues, and the corresponding standard deviations are substantial. This is also reflected 
in Fig. 2, which shows, for each parameter, the histogram of the 1000 estimates. The 
histograms for qoff  , �1 and �2 clearly consist of two peaks. The estimates correspond-
ing to one parameter vector θ are displayed in one color, either blue or red, depending 
on the peak in which the estimate for qoff  belongs. It shows that there is a one-to-one 
relation between peaks of the different parameters. Whenever the estimate for qoff 
lies in the lower peak (red), the estimate for �1 lies in the lower peak and the esti-
mate for �2 lies in the higher peak, and the other way around (blue). We observe that 
the peaks correspond approximately to the two parameter vectors θ1 = (0.1, 0.1, 1, 2)⊤ 
(red), and θ2 = (0.1, 0.2, 2, 1)⊤ (blue). Note that the blue peaks correspond to the true 
parameter values of this setting.

By means of further analysis of the on/off-seq-2 process, we can explain why we 
find two peaks in Fig. 2. The main reason is that the parameter vectors θ1 and θ2 lead 
to two stochastic processes that are hard to distinguish. This becomes clear by analyz-
ing the distribution of the inter-birth times, the times between consecutive births. 
Note that these times are i.i.d. We denote the corresponding random variable by T. 
The time between two births always starts in the on-state, and consists of the time it 
takes to go back and forth between the on- and off-state, and the time it takes to go 
through the sequential exponential birth phases. Let G ∈ {1, 2, . . .} be a geometrically 
distributed random variable with parameter p = �1/(�1 + qoff ) , such that G − 1 can 

Table 1  Mean values of 1000 estimates, with corresponding standard deviations. On/off-seq-2 
process with true parameter values: qon = 0.1, qoff = 0.2, �1 = 2, �2 = 1

qon qoff �1 �2

Mean 0.1066 0.1625 1.7079 1.3115

SD 0.0036 0.0480 0.4780 0.5315

Fig. 2  Histograms of 1000 estimates. On/off-seq-2 process with true parameter values: 
qon = 0.1, qoff = 0.2, �1 = 2, �2 = 1
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be interpreted as the number of on/off loops of which the inter-birth time T consist. 
Then T can be written as the geometric sum

where A0 = 0 , the Ai , for i ≥ 1 , are independent and identically distributed as the sum 
of two exponential random variables with rates �1 + qoff and qon , and Ã is distributed as 
the sum of two exponential random variables with rates �1 + qoff and �2.

Using expression (4) for T, we can study its distribution, starting with the expecta-
tion and variance of T. Using Wald’s equation on the geometric sum, we see that

Similarly, with Wald’s equation for the variance, we find

Interestingly, when computing the expectation and standard deviation of T for the ear-
lier defined parameter vectors θ1 and θ2 , we observe almost no difference. Parameter θ1 
gives expectation 2.5 with standard deviation 4.92 and parameter θ2 gives expectation 
2.5 with standard deviation 4.82. This means that, for sample sizes of a realistic size, the 
distribution of T will be indistinguishable for both parameter vectors. This is confirmed 
by simulations of the distribution of T. For both θ1 and θ2 , B = 1000 realizations of the 
inter-birth time T were simulated according to (4). Figure  3 shows the corresponding 
empirical distribution functions for θ1 in red, and θ2 in blue. We see that the distribution 
functions are almost identical, which explains why the two parameter settings θ1 and θ2 
are indistinguishable, and two peaks appear in Fig. 2.

Intuitively, we can also understand why θ1 and θ2 virtually lead to the same stochas-
tic process. Note that in our true parameter setting θ2 , the values for qon and qoff  are 
relatively small compared with the values for �1 and �2 , hence the phase process dom-
inates the on/off switch. Because of this timescale separation, the time spent in the 
off-state between two consecutive births is negligible, and the inter-birth time mainly 
consist of the two exponential phases with parameters �1 and �2 . Interchanging the 
two phases will therefore have a modest effect on the inter-birth times, as long as the 
probability of jumping from state Xt = 1 to Xt = 2 stays the same. This probability is 
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equal to �1/(�1 + qoff ) , hence if qoff  is adjusted in the right way, the new situation vir-
tually yields the same stochastic process. This is exactly what describes the difference 
between θ2 and θ1 . The parameter values for �1 and �2 are swapped, and the probabil-
ity �1/(�1 + qoff ) = 10/11 in both situations.

We conclude that for some parameter settings, the shape of the likelihood function 
is such that numerical maximization can lead to multiple estimates of θ . A way to over-
come this numerical complication is by imposing constraints when maximizing the like-
lihood function. Table 2 and Fig. 4 show the results of a simulation study equal to the 
one above, with the only difference that the likelihood functions are maximized under 
the constraint �1 ≥ �2 , making it no longer possible to interchange �1 and �2 . We see 
from Table 2 that the mean values of the 1000 estimates lie close to the true parameter 
values, and that the standard deviations for the last three parameters decreased consid-
erably. Figure 4 shows us that the histograms of all parameters only have one peak now 
that we imposed the constraint on �1 and �2.

We note that we could also have performed the likelihood maximization under the 
opposite constraint �1 < �2 , if for some reason, e.g. biological knowledge of the system 
at hand, one would have been specifically interested in such candidate solutions. Also, in 

Fig. 3  Empirical distribution function of T based on 1000 simulated realizations of T for parameter vectors θ1 
(red) and θ2 (blue)

Table 2  Mean values of 1000 estimates, with corresponding standard deviations, 
obtained under the constraint �2 ≥ �1 . On/off-seq-2 process with true parameter values: 
qon = 0.1, qoff = 0.2, �1 = 2, �2 = 1

qon qoff �1 �2

Mean 0.1066 0.1911 1.9910 1.0004

SD 0.0036 0.0096 0.0960 0.0278

Fig. 4  Histograms of 1000 estimates obtained under the constraint �2 ≥ �1 . On/off-seq-2 process with true 
parameter values: qon = 0.1, qoff = 0.2, �1 = 2, �2 = 1
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principle one could first impose the constraint �1 ≥ �2 and then the constraint �1 < �2 , 
and pick the solution with the highest likelihood; however, in our case those values vir-
tually coincided as a consequence of the two corresponding models being essentially 
equivalent, and selection of the correct parametersetting is then not guaranteed. The 
main message is that for some settings of the parameters the corresponding values of the 
likelihood may be practically indistinguishable, and that without imposing an appropri-
ate constraint on the parameters, the numerical approximation of the maximum likeli-
hood estimate may end up in either one of these parameter settings.

The influence of n and N

In this section we investigate the influence of n and N on the accuracy of the estima-
tion method. To illustrate our findings, we use the example as above, hence qon = 0.1 , 
qoff = 0.2 , �1 = 2 , �2 = 1 , with the small adjustment that the death rate of the simulated 
data, µ , now equals 0.3. Hence, we analyze a model in which both births and deaths 
occur, and of which the death rate µ is an unknown parameter as well. Note that the 
distribution of T does not depend on the value of µ , hence we again need to impose the 
constraint �1 ≥ �2 when maximizing the likelihood function.

To investigate the influence of n on the accuracy of the estimation method, we per-
formed simulations for increasing values of n with N = 350 fixed. We chose n = 50 , 
n = 100 , n = 200 , n = 500 and n = 1000 . The results for B = 1000 , b = 10 and C = 100 
are shown in Table 3 and Figs. 5, 6, 7, 8 and 9. In a few cases, the estimate θ̂ ended up 
at the boundary of the domain D over which the likelihood function was maximized. 
This numerical issue was easily solved by enlarging the domain, after which the estimate 
ended up in the interior of D . Table 3 shows, for the increasing values of n, the sample 
mean of the 1000 estimates, with the sample standard deviation between brackets. We 
see that, for all five parameters, the sample mean lies closer to the true parameter value 
as n increases. Furthermore, the standard deviations decrease as n increases. This is also 
seen in Figs. 5, 6, 7, 8 and 9, which show for each parameter the histograms of the 1000 
estimates for the increasing values of n. In each figure, the limits of the x-axis are equal 

Table 3  Mean values of 1000 estimates for increasing values of n and N = 350 , with corresponding 
standard deviation between brackets. On/off-seq-2 process with true parameter values: 
qon = 0.1, qoff = 0.2, �1 = 2, �2 = 1,µ = 0.3

n qon qoff �1

50 0.1151 (0.0069) 0.1732 (0.0249) 1.9214 (0.2848)

100 0.1072 (0.0045) 0.1847 (0.0190) 1.9607 (0.2063)

200 0.1035 (0.0032) 0.1911 (0.0133) 1.9756 (0.1455)

500 0.1015 (0.0018) 0.1967 (0.0091) 1.9913 (0.0934)

1000 0.1007 (0.0013) 0.1979 (0.0063) 1.9924 (0.0635)

 n �2 µ

50 1.0311 (0.1049) 0.3009 (0.0057)

100 1.0132 (0.0717) 0.3005 (0.0039)

200 1.0082 (0.0468) 0.3004 (0.0028)

500 1.0035 (0.0284) 0.3002 (0.0018)

1000 1.0023 (0.0194) 0.3001 (0.0013)
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for the five histograms, which makes it immediately visible that the histograms become 
narrower when n increases.

We have seen that the accuracy of the estimation method can be increased by 
choosing a higher value of n. However, in practical situations it is not always pos-
sible to increase n. This is, for example, the case in the application studied in “RNA 
transcription” section. One experiment measures the number of RNA molecules in a 

Fig. 5  Histograms of the obtained estimates of qon for increasing values of n 

Fig. 6  Histograms of the obtained estimates of qoff for increasing values of n 

Fig. 7  Histograms of the obtained estimates of �1 for increasing values of n 

Fig. 8  Histograms of the obtained estimates of �2 for increasing values of n 
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single cell over time, but the lifetime of a cell is limited. The number of experiments 
N, however, can be increased. To investigate the influence of N on the accuracy of 
the estimation method, we performed simulations for increasing values of N with 
n = 100 fixed. We considered N = 200 , N = 350 , N = 500 , N = 750 and N = 1000 . 
The results for B = 1000 and b = 10 are given in Table  4. For each value of N, this 
table shows again the sample mean of the 1000 estimates with the sample standard 
deviation between brackets. We see that for each parameter, the mean values lie close 
to the true parameter value, but do not improve as N increases. This means that the 
bias of the estimates is mainly determined by the value of n, which is related to how 
much information is given by one experiment. However, Table 4 also shows that the 
standard deviations do decrease as N increases, and in this way provides insight in 
how the accuracy increases as a function of N.

On/off‑seq‑3 process

In the first part of the numerical study, we have analyzed the on/off-seq-2 process. In 
this section we explore the numerical complications related to the likelihood maximi-
zation for the on/off-seq-L process with L > 2 , and we investigate the accuracy of the 
estimation method for the on/off-seq-3 process. First note that for L > 2 , the model is 

Fig. 9  Histograms of the obtained estimates of µ for increasing values of n 

Table 4  Mean values of 1000 estimates for increasing values of N and n = 100 , with corresponding 
standard deviation between brackets. On/off-seq-2 process with true parameter values: 
qon = 0.1, qoff = 0.2, �1 = 2, �2 = 1,µ = 0.3

N qon qoff �1

200 0.1072 (0.0059) 0.1849 (0.0252) 1.9642 (0.2679)

350 0.1072 (0.0045) 0.1847 (0.0190) 1.9607 (0.2063)

500 0.1071 (0.0038) 0.1848 (0.0151) 1.9639 (0.1701)

750 0.1072 (0.0031) 0.1850 (0.0124) 1.9627 (0.1376)

1000 0.1072 (0.0027) 0.1849 (0.0106) 1.9609 (0.1176)

 N �2 µ

200 1.0199 (0.0971) 0.3005 (0.0054)

350 1.0132 (0.0717) 0.3005 (0.0039)

500 1.0097 (0.0577) 0.3006 (0.0032)

750 1.0082 (0.0459) 0.3007 (0.0027)

1000 1.0078 (0.0384) 0.3007 (0.0023)



Page 14 of 20de Gunst et al. BMC Bioinformatics          (2022) 23:105 

partially unidentifiable, since interchanging the parameters �2, . . . , �L yields an identi-
cally distributed process {Mt} . Hence, when performing likelihood maximization, a 
fixed order of these parameters should be chosen.

The analysis on the inter-birth times of the on/off-seq-2 process can be extended for 
L > 2 . The inter-birth time T can still be written as the geometric sum in (4), but Ã is 
now distributed as the sum of L exponential random variables with rates �1 + qoff , 
�2, . . . , �L . This means that E[T ] and Var[T ] only change by factors 1

�3
+ · · · + 1

�L
 and 

1
�
2
3

+ · · · + 1
�
2
L

 , respectively. We have

Similarly, with Wald’s equation for the variance, we find

This means that the same reasoning holds as for the on/off-seq-2 process, and additional 
constraints on �1 with respect to �2, . . . , �L are needed to make sure that the likelihood 
function has a unique maximum.

To investigate the accuracy of the estimation method for the on/off-seq-3 process, we 
performed a variety of simulation studies. We present our findings by means of two dif-
ferent examples. The first example is the on/off-seq-3 process with parameters qon = 0.2 , 
qoff = 0.5 , �1 = 0.5 , �2 = 2 , �3 = 4 and µ = 0.1 . Table  5 and Fig.  10 show the simula-
tion results for this example under the constraint �1 ≤ �2 ≤ �3 , with B = 1000 , b = 10 , 
C = 100 and data size n = 1000 , N = 350 . Table 5 shows, for each parameter, the sample 
mean and corresponding sample standard deviation of the 1000 estimates. We see that 
the mean values for parameters qon , �2 , �3 and µ lie close to the true parameter values. 
The mean values for parameters qoff and �1 , however, exceed the true parameter values. 
This is also visible in Fig. 10, which shows for each parameter the histogram of the 1000 
estimates. The histograms for qoff and �1 show some outliers which increase the corre-
sponding means. This example confirms that when L increases it becomes more difficult 
to accurately estimate all model parameters from the data. Hence, as to be expected, 
for larger L more data is needed (i.e. by increasing n) to obtain a similar accuracy as for 
models with a smaller L.

For some applications it may be more realistic to assume that all �i, i = 1, . . . , L , are 
equal. Under this assumption, the accuracy of the estimation method may increase sub-
stantially. We illustrate this by the second example. We consider the on/off-seq-3 pro-
cess with parameters qon = 0.25 , qoff = 1 , �1 = �2 = �3 = � = 10 and µ = 2 , hence 
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Table 5  Mean values of 1000 estimates, with corresponding standard deviations. True parameter 
values: qon = 0.2 , qoff = 0.5 , �1 = 0.5 , �2 = 2 , �3 = 4 , µ = 0.1

qon qoff �1 �2 �3 µ

Mean 0.2008 0.5441 0.5360 1.9895 3.9995 0.1000

SD 0.0037 0.1463 0.1139 0.4370 0.7865 0.0006
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θ = (qon, qoff , �,µ)
⊤ . The results of a simulation study with B = 1000 , b = 50 , C = 100 , 

n = 120 and N = 375 are presented in Table  6 and Fig.  11. Table  6 shows, for each 
parameter, the sample mean and corresponding sample standard deviation of the 1000 
estimates. We see that the mean values of the parameters are close to the true param-
eter values. This is reflected in Fig. 11, which shows for each parameter the histogram of 
the 1000 estimates. The histograms are nicely shaped around the true parameter values. 
Note that the size of the data in this example is substantially smaller than in the previous 
example.

Model selection

The estimation method relies on the assumption that the number of phases L is known. 
However, in some situations one would like to select the model that leads to the best repre-
sentation of the data set. For the on/off-seq-L process, this relates to the number of phases 
L, but also to whether an on/off mechanism should be included in the model or not. In 
this section we investigate a model selection procedure with respect to various on/off-seq-
L processes. We use the example of “The influence of n and N” section with n = 100 and 

Fig. 10  Histograms of 1000 estimates. On/off-seq-3 process with true parameter values: qon = 0.2 , qoff = 0.5 , 
�1 = 0.5 , �2 = 2 , �3 = 4 , µ = 0.1

Table 6  Mean values of 1000 estimates, with corresponding standard deviations. True parameter 
values: qon = 0.25, qoff = 1, � = 10 and µ = 2

qon qoff � µ

Mean 0.2547 0.9727 10.1153 2.0282

SD 0.0049 0.0253 0.2028 0.0451

Fig. 11  Histograms of 1000 estimates. On/off-seq-3 process with true parameter values: 
qon = 0.25, qoff = 1, � = 10 and µ = 2
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N = 350 , so that the true underlying model is the on/off-seq-2 process with parameters 
qon = 0.1 , qoff = 0.2 , �1 = 2 , �2 = 1 and µ = 0.3 . We simulated 1000 data sets according 
to this model. Next we applied the estimation method with respect to six different models, 
arising from the combination of whether or not there is an on/off mechanism, and if the 
birth process consists of 1, 2 or 3 phases. This means that next to the on/off-seq-1, on/off-
seq-2 and on/off-seq-3 models, we considered the seq-1, seq-2 and seq-3 models in which 
the on/off mechanism is omitted. For each simulated data set, we computed the six Akaike 
information criterion (AIC) values from the maximum likelihood estimates corresponding 
to the six different models under the constraints �1 ≥ �2 and �1 ≥ �2 ≥ �3 . In 95.7% of the 
cases the lowest AIC value was indeed found for the correct model, the on/off-seq-2 pro-
cess. The remaining 4.3% resulted in a lowest AIC value for the on/off-seq-3 process. This 
outcome confirms the use of the AIC as a sound model selection criterion.

RNA transcription

In this section we apply the estimation method for the on/off-seq-L process, as described 
at the end of “Quasi birth–death framework” section, to real data of RNA counts. We first 
describe in detail the biological process of RNA transcription, and then show the results of 
a model selection procedure that we performed on the data with respect to various on/off-
seq-L processes.

Biological background

Proteins play a major role in the structure and functioning of cells. In fact, all physiologi-
cal processes in cells depend on proteins. The information needed for the synthesis of pro-
teins is stored in the DNA; think of it as a collection of recipes. Specific parts of the DNA, 
called genes, contain the information for a particular protein, and can be seen as one recipe. 
When a protein is needed, the information in the corresponding gene is used for the syn-
thesis of this protein in a process called gene expression. Gene expression takes place in two 
steps, see Fig. 12. In the first step, called transcription, the information in the gene is cop-
ied into an RNA molecule. In the second step, called translation, the copied information in 
the RNA molecule is used to make the corresponding protein. By transcription, multiple 
identical RNA molecules can be produced from one gene, and by translation each of these 
RNA molecules can produce multiple identical proteins. In this way, the proteins can be 
synthesized with their own efficiency according to the needs of the cell, despite the fact that 
each cell contains only one or two copies of a specific gene. Interestingly, gene expression 
is constructed in this way in all cells, from bacteria to humans. We focus on the transcrip-
tion step in gene expression. It is known that in bacteria the stochasticity in gene expres-
sion stems largely from transcription [4], which is why a stochastic model for this process is 
appropriate.

The transcription of RNA molecules is a complex process. After the transcription of an 
RNA molecule has been initiated, it takes multiple sequential phases before the molecule 
is eventually produced. Biologically, RNA transcription takes place through the following 

DNA RNA Protein
transcription translation

Fig. 12  Steps of protein synthesis



Page 17 of 20de Gunst et al. BMC Bioinformatics          (2022) 23:105 	

steps: first, the molecule RNA polymerase binds to the DNA and slides along the DNA to 
find a transcription start site, called promoter. Once it has found a start site it binds firmly 
and the transcription begins. The RNA polymerase moves along the gene while copying the 
genetical code step by step. Once it reaches the stop site, it releases itself and the new RNA 
transcript from the DNA. From there, the process can be repeated to produce more RNA 
molecules. The RNA transcription can be controlled by a process called gene repression. 
The promoter can bind to repressors for a period of time in which RNA polymerase cannot 
reach the start site to initiate transcription. This causes the promoter to switch between an 
active state, free from repressors, and an inactive state, bound by repressors.

The on/off-seq-L process has been found to be a realistic model for RNA transcrip-
tion [3, 9], and combines the active/inactive switch of the promoter with the sequential 
phases of transcription. The phases in the transcription process that contribute to the 
transcription rate the most are called rate limiting, and differ per promoter. Phases that 
are relatively fast compared to other phases generally do not need to be included in the 
model. Likewise, it depends on the promoter whether or not the active/inactive mecha-
nism has a (substantial) effect on the transcription dynamics. If the time spent in the 
inactive state is relatively short compared to the time spent in the active state, it could be 
decided not to include an on/off mechanism in the model. The model that leads to the 
best representation of the transcription process can be identified either based on bio-
logical considerations or by means of a statistical model selection procedure.

Model selection

In this section we describe a model selection procedure that we performed for RNA data 
corresponding to the so-called � RM promoter [3], which were kindly provided by prof. 
A.S. Ribeiro from Tampere University, Finland. The available data set consists of meas-
urements on the number of RNA molecules in a total of 775 single cells, hence N = 775 . 
Each cell was measured every minute over a period of at most 2 h, depending on the 
lifetime of the cell, hence � = 1 and nk ≤ 121 (see Remark 1 above). We used the on/off-
seq-L process to describe the data and applied the Erlangization method as described in 
“Quasi birth–death framework” section to evaluate the likelihood function and obtain 
maximum likelihood estimates. As in “Model selection” section, we performed our 
model selection on six different models, arising from the combination of whether or not 
there is an on/off mechanism, and if the birth process consists of 1, 2 or 3 phases.

As discussed in “Numerical study” section, imposing constraints on the parameters 
is an effective way to handle numerical issues regarding local maxima in the approxi-
mated likelihood function. Without constraints the numerical maximization may end up 
in either one of the local maxima. In case of real data one could perform the estimation 
method under the various constraints and compare the likelihoods corresponding to the 
solutions, which is what we did. For the on/off-seq-2 process we consider the two cases 
�1 ≤ �2 and �2 ≤ �1 . As pointed out in “On/off-seq-3 process”  section, for the on/off-
seq-3 process, we first need to fix the order of �2 and �3 , and then consider the various 
constraints on �1 with respect to �2 and �3 . This results in the three cases �1 ≤ �2 ≤ �3 , 
�2 ≤ �1 ≤ �3 and �2 ≤ �3 ≤ �1.

The results of the model selection, with b = 10 and C = 50 , are shown in Table 7. This 
table shows for each model/constraint pair the maximum likelihood estimates of the 
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parameters in the first five columns, the sixth column presents the corresponding likeli-
hood values, and the Akaike information criterion (AIC) is shown in the last column. We 
see that the model that leads to the best fit should contain an on/off mechanism, since 
the lowest AIC values are found for these models. Within this set of models, the lowest 
three AIC values are relatively close to each other. We conclude that the on/off-seq-3 
process with �2 ≤ �1 ≤ �3 gives the best fit for this data. However, the on/off-seq-2 
process with �2 ≤ �1 and especially the on/off-seq-3 process with �2 ≤ �3 ≤ �1 should 
be considered as plausible options as well. Additional data or biological considerations 
could help in providing a more conclusive answer.

We observe that our findings differ from those in [3]. This can potentially be explained 
by the fact that by using the constraints we have adequately dealt with possible numeri-
cal complications related to likelihood maxima. In addition, as mentioned in the 
introduction, in [3] the likelihood function is computed from observations of the tran-
scription intervals and not from the RNA counts, where it is noted that these intervals 
are not known exactly due to the fact that the data is interval-censored.

Discussion
Motivated by a biological application, we have studied the on/off-seq-L process, a bd 
process with births occurring according to a sequential process consisting of multiple 
phases and regulated by an on/off mechanism. We have mathematically defined the on/
off-seq-L process and have shown that it can be seen as a qbd process. The latter enables 
the use of the Erlangization technique as introduced in [6] to approximate the likelihood 
function. Maximum likelihood estimates can then be obtained by numerical optimiza-
tion of this likelihood.

In a numerical study, we have investigated the accuracy of this estimation method for 
the on/off-seq-L process, and have explored numerical complications related to the like-
lihood maximization. We have shown that for some parameter settings the shape of the 
likelihood function is such that numerical maximization can lead to multiple estimates 
of θ . It is therefore necessary to impose constraints on the order of �1, . . . , �L when 
maximizing the likelihood function. Under these constraints, the estimation method 

Table 7  Model selection for the � RM promoter data. The columns show the maximum likelihood 
estimates, the loglikelihood values, and the AICs, respectively

qon qoff �1 �2 �3 logL AIC

Seq-1 – – – 0.0144 – – − 3569.9 7141.8

Seq-2 �1 ≤ �2 – – 0.0144 8.9245 – − 3569.4 7142.7

Seq-2 �2 ≤ �1 – – 5.8876 0.0144 – − 3569.5 7143.1

Seq-3 �1 ≤ �2 ≤ �3 – – 0.0144 9.9536 9.9875 − 3569.3 7144.6

Seq-3 �2 ≤ �1 ≤ �3 – – 5.8876 0.0144 6.0453 − 3570.5 7147.0

Seq-3 �2 ≤ �3 ≤ �1 – – 5.8876 0.0144 5.7305 − 3570.7 7147.3

On/off-seq-1 – 0.0249 0.0608 0.0496 – – − 3475.2 6956.5

On/off-seq-2 �1 ≤ �2 0.0303 0.4089 0.2220 0.2221 – − 3474.8 6957.6

On/off-seq-2 �2 ≤ �1 0.0254 1.2284 0.7920 0.1416 – − 3468.2 6944.4

On/off-seq-3 �1 ≤ �2 ≤ �3 0.0312 0.4410 0.2314 0.2314 9.9983 − 3475.6 6961.3

On/off-seq-3 �2 ≤ �1 ≤ �3 0.0255 2.4371 1.5558 0.1427 3.8107 − 3466.5 6943.1

On/off-seq-3 �2 ≤ �3 ≤ �1 0.0254 4.4154 2.8221 0.1423 2.6958 − 3466.9 6943.7



Page 19 of 20de Gunst et al. BMC Bioinformatics          (2022) 23:105 	

works as expected. We have seen that the estimation method yields accurate results, and 
that the accuracy improves as n or N increases. As illustrated for L = 3 , the estimation 
method can also be applied for processes with L > 2 , but more observations are needed 
to obtain a similar accuracy as for L = 2.

We note that the results that we obtained hold for a parameter setting where the phase 
process dominates the on/off switch. That is, the values for qon and qoff are relatively 
small compared to the values for �1, . . . , �L . However, parameter settings for which this 
is not the case should also be explored. Recall that the random variable G − 1 , as in the 
definition of T (4), can be seen as the number of on/off loops of which the inter-birth 
time consists. Furthermore, E [G − 1] = qoff/�1 , hence the ratio of these two parameters 
play a major role in how the process behaves. We suspect that there are three different 
regimes that need to be distinguished with respect to the timescales of the parameters:

•	 �1 is substantially higher than qoff . In this case E [G − 1] is small and the phase pro-
cess dominates the on/off switch. This regime corresponds to the settings studied in 
“Numerical study” section.

•	 �1 is substantially smaller than qoff . In this case E[G − 1] is large and the on/off 
switch dominates the phase process. In view of performing statistical inference on 
the model, this does not seem to be a relevant regime in any practical situation. Only 
very view births will occur and therefore the on/off mechanism will not be detectable 
from data on the population size.

•	 Both �1 and qoff are of the same order of magnitude. In view of performing statistical 
inference on the model, this seems to be a relevant regime when E[G − 1] ≤ c , for 
some constant c small enough. At the same time, we expect it to be a complicated 
regime with its own numerical complications. Preliminary simulation studies sug-
gest that, unless n is large, the value of c will be hard to distinguish from the data, and 
hence the corresponding parameters are hard to estimate.

The possible regimes lead us to an important direction for further research. It is inter-
esting to investigate whether there are more relevant regimes and how this can be con-
firmed mathematically. Moreover, the parameter estimation method should be explored 
for the last regime, in which all parameters are of the same order of magnitude. Here, 
one of the questions is whether it is possible to find constraints on the model parameters 
under which the likelihood maximization will result in accurate estimates.

Conclusions
The on/off-seq-L process is a suitable model for the dynamics of a population of RNA mol-
ecules in a single living cell. Analysis of this model can give more insight into the RNA tran-
scription process. The proposed estimation method based on the Erlangization technique 
is a highly accurate method to find parameter estimates for this model. As expected, the 
accuracy can be improved by increasing the number of observations n or the number of 
experiments N. For larger values of the number of phases L, one needs more data in order 
to obtain an estimate with a given level of accuracy. However, in the situation that all �i are 
equal, the accuracy is substantially better than for models with heterogeneous �i . Based on 
experiments in which we apply our estimation method on a real data set of RNA counts, 
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we find empirical backing for the claim that the on/off-seq-3 process is the best model to 
describe RNA transcription.
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